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Abstract Processes and markets uncertainties make

batch plants a complex environment to manage production

activities. Uncertainties may cause deviations and infeasi-

bilities in predefined schedules; this may result in poor

planning and inefficient utilization of materials. Conse-

quently, the relevance of explicitly incorporating variabil-

ity in the scheduling formulation in order to offer more

efficient plans and robust decisions to changes has become

recognized. This work addresses the batch plants schedul-

ing under exogenous uncertainty. The most widely utilized

approach to tackle this problem is stochastic programming;

however its solution results in high computational expen-

ses. From another standpoint S-graph, a graph-theoretic

approach, has proved to be very efficient to deal with

deterministic scheduling. In this work, the S-graph frame-

work is enhanced so that stochastic scheduling problems

can be handled. For this purpose, a LP model that is used as

performance evaluator has been coupled with S-graph

framework. One of the main advantages of the proposed

approach is that the search space does not increase

according to the number of scenarios considered in the

problem. Finally, the potential of the proposed framework

is highlighted through two illustrative examples.
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List of symbols

Indices

P Products

R Production routes

S Scenarios

Sets

Rp Routes that process product p

Parameters

Bmax
p;r Maximum batch size for product P that route r

can produce, kg

Costover
p Overproduction cost for product P, c.u

Costunder
p Underproduction cost for product P, c.u

demp,s Demand for product P under scenario s, kg

ps Scenario S probability of occurrence

pricep Market price for product P, c.u

SFmin
p;r

Minimum batch size for product P allowed at

route r expressed as a proportion of the

maximum batch size

Discrete variable

Npr Number of batches of product P that are processed

using route r. (Please notice that this is a variable for

the whole problem, however it is a given parameter

for the LP-performance evaluator)

Continuous Variables
E[profit] Total expected profit, c.u

op,s Overproduction of product P in scenario s, c.u

profits Profit accomplished under scenario s, c.u

up,s Underproduction of product P in scenario s, c.u

xp,r Batch size for product P using route r as a

proportion of the maximum batch size, c.u

J. M. Laı́nez � L. Puigjaner (&)

Department of Chemical Engineering,
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Introduction

The scheduling of production facilities can be generally

defined as a decision-making process that answers the

questions of how, where, and when to produce a set of

products in order to satisfy customer demand. How refers

to the plant resources required (processing units, steam,

electricity, raw materials, manpower, etc.); the question

where is answered by allocating every operation to a spe-

cific unit; finally, when consists of predicting the start and

end times for each operation (Pekny and Reklaitis 1998). It

is evident that uncertainties in batch operations may arise

from different sources (i.e. external demand, prices of raw

and final products, processing times and equipment avail-

ability) causing previous schedules to become non-optimal

and in some cases infeasible. Despite the uncertain nature

of scheduling problems, research efforts over last decades

have primarily focused on deterministic formulations

which assume all parameters to be precisely known in

advance.

One of the first contributions to this field is the work of

Kondili et al. (1993). They developed the state-task-net-

work (STN) representation in order to formulate the prob-

lem of production scheduling in multipurpose plants as an

MILP. Later on, Pantelides (1994) presented the resource-

task-network (RTN) representation which employs a uni-

form treatment for all available resources. Hence, RTN

reduces the number of binary variables and equations when

compared with the STN. Both, the STN and RTN formu-

lation used a discrete time representation. Pinto and

Grossmann (1995) extend the STN formulation to a con-

tinuous time representation. For this purpose, they proposed

to use a set of global time slots with unknown duration for

allocating units to tasks. Similarly, Castro et al. (2001)

extend the RTN framework to a continuous time formula-

tion. Lin et al. (2002) used the concept of event points. The

global time point representation is relaxed by allowing

different tasks to start at different moments in different units

for the same event point. The state sequence network (SSN)

formulation developed by Majozi and Zhu (2001) consists

in a continuous formulation which eliminates the use of task

and unit, thus reducing the number of binary variables

compared to other continuous formulations. Finally, Cerda

and co-workers (Cerda et al. 1997; Méndez and Cerda

2002) developed precedence based models which are suit-

able for cases where sequence-dependent changeovers are

to be considered.

The approaches developed so far to address the problem

of decision making under uncertainty can be generally

classified into two groups, i.e. reactive and preventive

procedures. Reactive scheduling attempts to modify a

nominal schedule obtained by a deterministic formulation

so as to adopt it to changes. Intelligent agents and

dispatching rules are commonly used to perform the

schedule modifications. On the other hand, preventive

approaches explicitly take into account uncertainties into

the problem formulation. Stochastic programming (SP) is

the most commonly adopted approach in the literature for

preventive scheduling. A solution with the maximum

expected performance is obtained by including estimated

scenarios in the formulation. These estimated scenarios are

generated by representing uncertain parameters as random

variables. Their goal is to find a solution that is feasible for

all the possible data scenarios and which maximizes the

expectation of a performance indicator. The most widely

applied SP models are two-stage programs. In models of

this type, the decision maker takes some actions in the first

stage, after which a random event occurs and affects the

outcome of those first-stage decisions. A recourse decision

can then be made in the second stage that compensates for

any negative effects that might have been experienced as a

result of the first-stage decisions.

Scheduling problems are highly complex problems. Due

to the discrete decisions involved (e.g., equipment assign-

ment, task allocation over time) these problems are inher-

ently combinatorial in nature, and hence very challenging

from the computational complexity point of view (Pekny

and Reklaitis 1998). Therefore, a modest growth in prob-

lem size can lead to a significant increase in the compu-

tational requirements (Lin and Floudas 2004). Furthermore,

stochastic programs become deterministic equivalent pro-

grams with the utilization of scenarios or scenario tree. The

size of the deterministic scheduling formulation can easily

grow out of hand for a large number of scenarios, which

renders the direct solution approaches numerically intrac-

table and thus necessitates special methods, such as

decomposition and aggregation (Cheng et al. 2004). Hence,

it turns out that one of the major challenges in the area of

scheduling under uncertainty is to reduce the computa-

tional cost required to solve this kind of problems (NP

complete problems which are complicated by the consid-

eration of uncertainty). It is noteworthy that solution pro-

cedures based on knowledge of the specific problem have

been recognized to exhibit a good potential in providing

advances in this direction (Li and Ierapetritou 2008).

S-graph is a scheduling approach that has proven to

significantly reduce the computational effort compared to

mathematical programming techniques. S-graph is a rep-

resentation that takes into consideration the specific char-

acteristics of chemical processes in scheduling. It allows

for the formulation of scheduling problems using similar

graph representations as those used to solve the job-shop

problem but contemplating the higher complexity of the

chemical multipurpose batch scheduling (Sanmartı́ et al.

2002). Moreover, one of its important capabilities is that it

offers a strictly continuous time formulation. Initially, this
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approach was only applied to problems in which the

objective was to minimize makespan. The problem was

solved using a Branch and Bound and an efficient graph

algorithm to evaluate the makespan. Recently, S-graph has

been extended to be an effective search algorithm for

determining schedules that optimize throughput, revenue,

or profit over a predefined time horizon in multipurpose

batch plants (Majozi and Friedler 2006).

The work presented in this paper starts from the above

mentioned latest framework. A new extension of S-graph

that allows tackling scheduling problems under external

uncertainty (demand and prices) is shown. The resulting

schedule is equivalent to the one that can be obtained using

two-stage stochastic programming techniques. We dem-

onstrate the capabilities of the proposed approach in

addressing stochastic scheduling problems by solving two

illustrative examples.

The paper is organized as follows. In ‘‘Problem state-

ment’’ a formal definition of the problem of interest is

given. A brief introduction to S-graph presents a short

overview to S-graph representation. In Enhancing S-graph

framework to approach scheduling under uncertainty the

specific algorithm used to deal with scheduling under

uncertainty is derived and its performance is highlighted

through illustrative examples in Literature examples.

Finally, some conclusions about this work are drawn in

Conclusions.

Problem statement

In last decade many authors have recognized that it is

unlikely to apply deterministic schedules in real scenarios

without decreasing considerably their performance, and

have made efforts to extend deterministic approaches to

situations with some type of uncertainty, so as to obtain

better results when their solutions are deployed in real

scenarios. Here, we extend the S-graph deterministic

framework for solving scheduling problems under uncer-

tainty in demand.

Generally speaking, the scheduling problem seeks the

best way of allocating and timing the different production

tasks to the available resources. In this work, the sched-

uling problem aims at maximizing the business profit. The

problem input data can be classified into three groups: (1)

resources related data, (2) process related data and (3)

economic data.

The first group describes all the enterprise available

equipment such as processing and storage units. Data

regarding its maximum capacity and minimum working

capacity are usually required. Moreover, maximum avail-

ability of raw materials may be relevant depending on the

problem scope. The process related data describes the

different recipes that may be followed in order to obtain the

final products. Here, the different tasks required to produce

an intermediate or final product are determined. The input

and output materials for each task are stipulated as well as

their respective mass proportions and processing times.

Additionally, the equipment that is suitable to perform each

task is identified. Other relevant data may be the energy,

vapor or any other utility consumption for each task.

Finally, the last group is concerning all the data required

to quantify the expected net benefits due to production

operations. On the outcome side, raw materials and oper-

ation costs are included. The revenues are generated by

selling the final products to the target marketplace, thus

two important input parameters to define are the market

price and demand of each product. It is important to point

out that given the exogenous stochastic nature of the

problem tackled in this paper, demand is considered as

uncertain. Commonly, random parameters are described by

using a probability distribution function. Instead, the sce-

nario approach is adopted in this work so that the stochastic

scheduling problem can be formulated using a determin-

istic equivalent approach. In case that demand probability

distribution function are available, a Monte Carlo sampling

can be executed in order to obtain satisfactory equally

probable scenarios of demand.

The proposed stochastic S-graph framework is intended

to support plant managers on the decision making about the

timing of tasks to be performed in each processing unit, the

amount of material being processed at each time in each

unit, and the amount of final products to be sold in each

demand scenario. These decisions will be taken such that

the expected profit evaluated at the end of a predefined

planning horizon is maximized.

A brief introduction to S-graph

A detailed description of the S-graph framework has

been presented in the works of Sanmartı́ et al. (2002) and

Romero et al. (2004). Additionally, the reader is referred to

the web site http://www.s-graph.com (University of Pan-

nonia, Faculty of Information Technology, last visited 10

April 2009) for further information. For comprehensive-

ness a short description is given here.

Graph representation of scheduling problems

The S-graph framework consists of a sophisticated graph

theoretic model developed to address the deterministic

scheduling problem in multipurpose batch plants. S-graph

was originally designed for makespan minimization prob-

lems assuming Non Intermediate Storage (NIS) policy.

Later works have extended the framework so that other

Using S-graph to address uncertainty in batch plants 107

123

http://www.s-graph.com


operational policies (common intermediate storage, fixed

intermediate storage, zero wait) can be considered.

In an S-graph, the nodes correspond to production tasks

except terminal nodes which are to denote the final prod-

ucts. The S-graph arcs are classified into two classes; the

so-called recipe arcs and schedule arcs. It is noteworthy

that recipe arcs are an input to the scheduling problem,

while schedule arcs result from the S-graph algorithm

solution.

Recipe arcs represent the preceding relationship among

tasks. If a recipe arc leads from task k1 to task k2 means that

task k2 execution must start at least c(k1, k2) time units later

than task k1 execution. Here, c(k1, k2) is the weight of the

recipe arc (k1, k2). In case of problem initialization and

more than one equipment is suitable to perform a recipe arc

(k1, k2) (i.e. execution of task represented by the origin

node k1), the arc weight is the minimum processing time

for task k1 among the suitable equipment units.

On the other hand, schedule-arcs denote the sequencing

of tasks assigned to the same equipment unit. Assume that

according to the scheduling, task k1 and k2 are assigned to

equipment unit E1 and additionally, these tasks will be

performed in the sequence k1–k2. Then, a zero-weighted

schedule arc (or an arc with the length of change over time

if appropriate) is added from all immediately subsequent

tasks of k1 in the recipe to task k2. A graph without any

schedule-arc is called recipe-graph, otherwise it is termed

schedule-graph. When all tasks have been sequenced for all

units, a complete schedule-graph have been generated.

Note that one schedule graph exists for each feasible

schedule. Therefore, an S-graph is given in the mathe-

matical form G(N,A1,A2), where N, A1 and A2 denote the

sets of nodes, recipe arcs, and schedule arcs, respectively.

In Fig. 1 is shown a recipe-graph, while Fig. 2 depicts a

complete schedule-graph.

One of the special features of S-graph is that feasible

schedules can be straightly identified. Loops must not

appear in an S-graph corresponding to a feasible schedule.

Following an appropriate Branch and Bound search strat-

egy, the S-graph of the global optimal schedule can be

efficaciously found. Please refer to Sanmartı́ et al. (2002)

for details regarding the search strategy.

Throughput maximization using S-graph

Majozi and Friedler (2006) had recently extended the S-

graph framework so that problems that involve economic

performance indicators can be tackled. Specifically, they

addressed the throughput maximization problem during a

fixed time horizon, but their approach can be certainly

extended to consider other indicators such as cost and

profit.

The optimization strategy they proposed can be under-

stood as comprised of two components: an optimality

search algorithm and a feasibility test.

Feasibility test

Having in mind that a node ðPiÞ in the search space cor-

responds to a discrete combination of batches of products,

the feasibility test of a node basically consists in: (1)

finding the minimum makespan schedule graph for the

specific combination of batches of products and (2) a

comparison between the minimum makespan obtained and

the fixed time horizon. Clearly, the schedule graph is fea-

sible if the minimum makespan obtained is less or equal

than the time horizon length.

Next, the optimality search algorithm is briefly

explained. The algorithm roughly consists in rules that

allow reducing the search space without losing optimality.

Given a set of products p, the number of product p batches

associated with node i is represented by Np. Using the

feasibility test it can be found the maximum number of

batches of each of the products that can be processed over

the time horizon of interest (Np
u). Once the infeasibility of a

node Pi belonging to this new reduced search region has

been proved, any other node Pi0 that accomplished that

Np
0 C Np for all products P is infeasible as well (Fig. 3).

Here Np
0 is the number of batches of product P at node Pi

and Np is the number of batches of product P at node Pi: It

can be noticed that the efficiency of the search results from

the elimination of redundancy since at each search point aFig. 1 A recipe graph

Fig. 2 A schedule graph
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node with a unique combination of batches of products is

explored. Furthermore, regions with no opportunity for

optimality are identified and eliminated a priori from the

search algorithm.

Enhancing S-graph framework to approach scheduling

under uncertainty

In this section we describe the framework proposed for

solving stochastic scheduling problems which basically

consists in a systematic search strategy based on: the

schedule generator (S-graph) and the expected perfor-

mance evaluator (LP Model). The algorithm flowsheet is

presented in Fig. 4.

The first step of the algorithm is to define the search

space. This consists in the set of nodes corresponding to

different combination of production routes for final prod-

ucts. Routes are those different realistic ways to process a

product or combination of products. Then, a node N could

be described by an Rj j Pj j dimensional integer matrix,

where each component Np,r represents the number of bat-

ches of product p to produce from route r. The procedure

that is followed to define the search space is the same

described in Throughput maximization using S-graph. For

a general case, this procedure finds the maximum number

of batches for each of product p that route r can process

over the time horizon of interest (Nu
p;r) (see section Feasi-

bility test). Here, toTest is defined as the set of nodes that

have not been tested yet but still have an opportunity to

result in a higher expected profit. The initial search space is

used to initialize toTest .

The schedule resulting with the higher expected profit is

selected from the nodes found during the definition of the

search space (Nu
p;r). Such schedule is used to initialize

cb_value and cb_schedule which represent the best

expected profit currently found and its corresponding

schedule, respectively.

The iterative part of the algorithm is explained next.

While toTest is not empty, a node is chosen and saved in

cnode. That node is then deleted from toTest. It is

noteworthy that the algorithm may be accelerated by

defining properly a strategy for choosing this node.

Afterwards, the expected profit is computed for cnode.

This is possible by solving the LP problem described in

subsection Expected performance evaluator: an LP. If

cnode expected profit is less than the current best

expected profit (cb_value), then this node is not the

optimal and it is not tested for feasibility. Otherwise,

cnode is tested for feasibility; if it has a feasible schedule

within the time horizon, such schedule will be the new

value for cb_schedule, and its corresponding expected

profit will be the new value for cb_value. In case the

cnode is infeasible, any other node N’ that accomplishes

that N 0p;r �Ncnode
p;r for all routes r and products p is

infeasible as well, so it should be also removed from

toTest as described in section 3.2.

If toTest is empty, cb_value is the expected profit

corresponding to the optimal solution stored in cb_sche-

dule. Otherwise, the iterative part of the algorithm is

repeated as above described.

Expected performance evaluator: an LP

In this section the Linear Program for node expected profit

evaluation is described. Each node corresponds to a given

number of batches for each product-route. Since overpro-

duction has as penalty the carrying inventory cost, it is not

always worth to work at full capacity. The LP model

allows determining the batch sizes for each route that

maximize the expected profit at each evaluated node. The

formal mathematical description is stated as follows.

Given:

• Market related inputs

P Set of products

Pricep Product price

Costover
p Overproduction cost for each product

Costunder
p Underproduction cost for each product

• Recipe related inputs

R Set of routes

Bmax
p;r The maximum batch size for product p that route r

can produce

SFmin
p;r The minimum batch size allowed for product p at

route r expressed as a proportion of the maximum

batch size

Potential region for optimality

AN u

BN u

AN

BN

Infeasible node

Infeasible region

Fig. 3 Procedure to reduce search region when it is found a

unfeasible node
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• Scenario related inputs

S Set of scenarios

Ps Scenario probability

demp,s The product p demand for scenario s

• Node data

Np,r Number of batches produced using route r for the

node being evaluated

The goal is to determine:

xp,r Batch size as a proportion of the maximum batch

size

up,s Underproduction of product P in scenario s

op,s Overproduction of product P in scenario s

Such that the expected profit is maximized.

The linear problem equations can be classified in three

groups, namely (1) batch size equations, (2) demand sat-

isfaction, and (3) the objective function.

Batch size equations

Equation 1 states that product p batch size for each route

(xp,r) is bounded in the range of SFmin
p;r ; 1

h i
which repre-

sents the interval where it must fall.

SFmin
p;r � xp;r � 1 8p; r 2 Rp ð1Þ

To avoid overlapping among search regions, xp,r is

forced to be greater or equal than
Np;r�1

Np;r
if Np,r is not equal

to zero. The following constraint expresses this

requirement:

Np;r � 1�Np;rxp;r 8p 2 P; r 2 Rp ð2Þ

Fig. 4 Flowsheet of the proposed algorithm
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Demand satisfaction

Equation 3 expresses that market sales must be less than or

equal to demand (demp,s). Here, up,s and op,s represent the

shortage and excess of product P over its corresponding

demand in scenario s, respectively. This equation states that

the total product demand must be equal to the amount of

product P processed by this node
P

r2Rp
xp;rB

max
p;r Np;r

� �
plus

the shortage, minus the overproduction. Since demand

depends on the disclosed scenario, we have Pj j Sj j equations.X
r2Rp

xp;rB
max
p;r Np;r þ up;s � op;s ¼ demp;s 8p 2 P; s 2 S ð3Þ

Objective function: expected profit

Equation 4 is to calculate the profit associated to each

scenario s. The objective function summarizes the revenues

associated to sales and the costs of not exactly meeting the

demand (shortages and overproduction). As Eq. 4 states,

product p market sales is equal to the amount producedP
r2Rp

xp;rB
max
p;r Np;r

� �
minus the overproduced amount

(op,s). Here, it is noteworthy that overproduction is equiv-

alent to the product inventory held at the end of the

scheduling horizon. Hence, the unitary overproduction cost

(Costover
p ) can represent the carrying cost of inventory

associated with a specific product p. On the other hand,

underproduction cost is related to those costs incurred

when an item is out of stock (shortage or backorders).

Businesses usually quantify these costs including the lost

contribution margin on sales plus lost customer goodwill.

profits ¼ pricep

X
p2P

X
r2Rp

xp;rB
max
p;r Np;r � op;s

 !

� Costover
p op;s þ Costunder

p up;s

� �
8s 2 S ð4Þ

Once the scheduling decisions have been assessed in

each possible scenario by Eq. 4, Eq. 5 calculates the

expected profit by considering the scenarios probability of

occurrence (Ps). The expected profit is the LP objective

function under the assumption that the decision maker is

neutral about risk.

E profit½ � ¼
X
s2S

psprofits ð5Þ

The LP problem for evaluating the expected profit can

be then mathematically posed as follows:

Max
xp;r ;op;s;up;s

E½profit�

subject to

Equations 1–5

xp;r; op;s; up;s 2 R
þ

Extension to other uncertain parameters Market uncer-

tainty usually escalates not merely on product demands, but

also on product prices. In the strict mathematical formu-

lation that means, that instead of just having demp,s as

uncertain parameter; the input for the algorithm would

consider pricep,s as random parameter as well. However, it

is important to notice that such extension does not cause

any alteration on the LP model. The exploration of the

search space, the feasibility testing, the variables, and

constraints in the LP remain the same. The profit equation

is the only change required in order to generalize the

problem in this manner:

profits ¼ pricep;s

X
p2P

X
r2R

xp;rB
max
p;r Np;r � op;s

 !

� Costover
p;s op;s þ Costunder

p;s up;s

� �
8s 2 S ð6Þ

Since the proposed algorithm is based on the

Throughput Maximization method published by Majozi

and Friedler (2006), it renders the advantages of that

algorithm and the S-graph framework. Examples of those

advantages are (1) globally optimal solutions are obtained,

(2) no infeasible solutions are found in terms of cross-

transfers (Friedler et al. 2008), (3) search space significant

reduction, and (4) it consists in a continuous formulation

without the necessity of determining the so-called time

points.

Usually, stochastic MILP models are very sensitivity to

the number of considered scenarios. Indeed, the size of

MILP model increases dramatically by increasing the

number of scenarios and accordingly the needed compu-

tational effort. By using the proposed algorithm, the com-

putational time for the expected profit calculation will be

increased; nevertheless the search space does not grow by

increasing the number of scenarios. Notice that the search

space size merely depends on route combinations. As a

result, the computational burden required to solve indus-

trial stochastic scheduling problems can be reduced sig-

nificantly by using the proposed algorithm.

Literature examples

The capabilities of the proposed framework are illustrated

by solving the next two illustrative examples.

Example 1

Consider the following example introduced by Majozi and

Friedler (2006) in which two products (product A and B)

are to be produced, according to the recipes given in

Figs. 5, 6. Five different equipment units are available. The
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suitability of equipment units are shown in the recipe fig-

ures. Each unit of product A has a market price of 30 c.u,

whereas product B has a price of 10 c.u. It is assumed that

overproduction and under-production cost are equal to 15

and 25% of the market price, respectively. Three scenarios

are considered for this example. The data related to product

demands in each scenario is presented in Table 1. In this

case the objective is to maximize expected profit over a

time horizon of 60 h under Non Intermediate Storage (NIS)

policy.

Recalling the algorithm of Enhancing S-graph frame-

work to approach scheduling under uncertainty, the search

region contains 15 nodes. The search region is illustrated in

Fig. 7. As shown in this Figure, five nodes are tested for

feasibility. The optimal solution is found in node (2, 2)

which exhibits an expected profit of 3,165.20 c.u. The

optimal solution comprises two batches of product A as

well as two batches of product B. The corresponding batch

sizes are shown in Table 2. In Fig. 8 the optimal schedule

obtained for this example is depicted.

Example 2

This example was first presented by Kondili et al. (1993).

Two products are produced from three feeds according to

the STN shown in Fig. 9. The STN utilizes five tasks which

can be performed in four different units. The corresponding

operational data for the example including units, tasks, and

materials is given in Tables 3, 4, and 5. Six scenarios are

considered in this problem. Table 6 shows scenario product

demands and the probability corresponding to each of

them. The objective is to maximize the expected profit

within a time horizon of 18 h following NIS policy.

Fig. 5 Route product A for example 1

Fig. 6 Route product B for example 1

Table 1 Scenario data for illustrative example 1

Scenario Demand (kg) Probability

P1 P2

I 58 64 0.30

II 100 92 0.40

III 148 62 0.30

Fig. 7 Search space for example 1

Table 2 Optimal batch quantity and sizes for illustrative example 1

Route Quantity Batch size proportion

A 2 1.00

B 2 0.92

Eq5

Eq4

Eq3

Eq2

Eq1

105 15 20 25 30 35 40 45 50 55 60

B1 A1 A1 B1

B2 A2A2 B2

B3 A3 A3 B3

A4B4 A4 B4

B5 B5

0

Fig. 8 Optimal schedule for example 1
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For this example six different routes to produce final

products exist which are depicted in Figs. 10, 11, 12, 13, 14,

15. The aforementioned fact leads to a six-dimension

search region that includes 6,400 nodes. Before finding the

optimal solution 318 nodes need to be tested for feasibility.

The optimal solution has an expected profit of 2,475.31 c.u.

The optimal schedule is shown in Fig. 16 and the corre-

sponding batch sizes are given in Table 7.

Conclusions

A new approach for solving scheduling problems under

exogenous uncertainty is presented. The approach is based

on the S-graph framework which has proven to be a rig-

orous and efficient tool for solving deterministic schedul-

ing problems.

The proposed framework does not only inherit the

advantages of S-graph, but it also has an advantage against

stochastic programming techniques; namely the computa-

tional effort needed to solve the problem does not increase

by increasing the number of scenarios. Such convenience

relies on the fact that the search space size is independent

on the number of considered scenarios. The size is uniquely

dependent on the route-product batches combination. As

the number of scenarios increase a larger LP is to be solved

but still due to its nature the computational times are very

small. Therefore, the presented framework has a great

potential to solve industrial scale problems of scheduling

under uncertainty.

Finally, the authors would like to highlight the contri-

bution of this work to the clean technologies field. Cleaner

production is proposed as an integral and preventive

strategy that aims at minimizing the environmental impacts

from industrial products and services. One of its main

activities is to identify options to minimize waste and

emissions out of industrial processes. This does include

Fig. 9 State-task network of example 2

Table 3 Unit data for illustrative example 2

Unit Maximum capacity (kg) Suitable for task

Heater 100 Heating

Reactor 1 50 Reaction 1, 2, 3

Reactor 2 80 Reaction 1, 2, 3

Separator 200 Separation

Table 4 Material data for illustrative example

States Storage Market Overproduction Underproduction

Capacity

(kg)

Price

(c.u.)

Cost (c.u.) Cost (c.u.)

Feed A Unlimited 0.00 0.00 0.00

Feed B Unlimited 0.00 0.00 0.00

Feed C Unlimited 0.00 0.00 0.00

Hot A 0.00 0.00 0.00 0.00

IntAB 0.00 0.00 0.00 0.00

IntBC 0.00 0.00 0.00 0.00

Impure E 0.00 0.00 0.00 0.00

Product 1 Unlimited 10.00 2.50 1.50

Product 2 Unlimited 10.00 2.50 1.50
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identifying losses from poor planning and suggesting better

choices in the utilization of materials. The S-graph

approach presented in this work supports managers on

deciding how to better use materials and allocate equip-

ment to the production of final products in the face

of uncertainty, hence collaborating with the cleaner

Table 5 Task data for illustrative example 2

Task Processing time (h)

Heating 1.0

Reaction 1 2.0

Reaction 2 2.0

Reaction 3 1.0

Separation 2.0

Table 6 Scenario data for illustrative example 2

Scenario Demand (kg) Probability

P1 P2

I 102.3 174.8 0.167

II 148.8 344.2 0.167

III 158.6 128.2 0.167

IV 0.0 225.1 0.167

V 72.0 109.1 0.167

VI 54.6 268.8 0.167

Fig. 10 Route A for example 2

Fig. 11 Route B for example 2

Fig. 12 Route C for example 2

Fig. 13 Route D for example 2

Fig. 14 Route E for example 2

Fig. 15 Route F for example 2

S

R2

R1

H

2 4 6 8 10 12 14 18160

C2

C5 C5 A5 F5

F2-2C1

C5

A1 A2 A3 F3-2C1

C3 C2 C3 C2 C3 F1 F2-1 F3-1

C1C1

C4 C4 C4 A4 F4

Fig. 16 Optimal schedule for example 2

Table 7 Optimal batch quantity and sizes for illustrative example 2

Route Quantity Batch size proportion

A 1 1.00

B 0 0.00

C 3 0.91

D 0 0.00

E 0 0.00

F 1 1.00
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production purposes. What’s more, cleaner production is

regarded as a proactive philosophy as a key difference from

pollution control. The proposed framework follows such

philosophy; it prevents the accumulation of inventory and

assists to efficiently maximize the incomes due to pro-

duction outputs by anticipating and taking into account

different probable demand scenarios.

Current work is going towards converting this approach

into an exact one by considering explicitly the probability

distribution of product demands in the LP model and not

just a discrete number of demand scenarios. Research

efforts are also devoted to develop accelerating algorithms

for this stochastic S-graph framework.
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