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Abstract: Optimal synthesis of workflow structures, the formerly undefined problem, 
has been introduced. Mathematical programming model is presented for determining 
the cost optimal workflow system of a given workflow problem. On the basis of a 
methodology developed for process network synthesis, effective solvers are available 
for the systematic synthesis of workflow systems.  
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1 Introduction 

Workflow technology has become a general tool for a wide range of business and 
management applications. The major source of this success in the applications is the 
resultant higher efficiency of business and management systems. To satisfy the 
requirements defined by the applications, the mathematical basis has been developed 
mainly on Petri net theory [ see e.g., Kiepuszewski et al., 03 and Aalst and Hofstede, 
05]. Even though this mathematical methodology provides a foundation for optimal 
operations of workflows, it is incapable of optimal design of the structure of 
workflows.  

The efficiency of a workflow system is highly depend on its structure or network. 
Since the same set of workflow problems can usually be solved by a large number of 
structurally different workflow systems with wide range of costs, the synthesis of the 
optimal network is crucial in practice.  

In the present paper, a new mathematical model has been introduced for 
workflow system synthesis. The solution of this model is partly based on a 
methodology formerly developed for processing network synthesis, the P-graph 
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framework. This framework includes a specific modeling techniques and effective 
algorithms for network synthesis.  

Even though there are similarities between production processes and workflow 
processes, the differences prevent the direct applications of the tools of the design of 
production processes for the design of workflow systems.  

2 Workflow System Synthesis Problem 

Let R denote the set of  different types of resources (e.g., specific information, or 
paper) that are available for the workflow processes to be designed from outside. Set 
R will be called as raw materials. The consumption of a raw material by the workflow 
process is subject to cost determined by a cost function depending on the volume of 
the consumed raw material. Let P denote the set of product documents, or products in 
brief, that must be generated by the workflow process. Let I be the set of all possible 
intermediate documents that can occur in the process as the output of some activities. 
Set M of materials, the union of sets R, I, and P, denotes all possible resources and 
types of documents of the process to be designed. An activity can be given as pair (α, 
β) where sets α and β are the inputs and outputs of the activity, respectively; they are 
subsets of M. The set of all plausible activities is denoted by A. 

The structural component of a workflow synthesis problem can, therefore, be 
identified as triplet (P, R, A) on M. The cost of a workflow process that produces the 
product documents in the required quantity is given as the sum of the costs of the raw 
materials and the cost related to the activities appearing in the synthesized workflow 
process. The cost of an activity is determined as the sum of its running cost and 
investment cost assigned to the period of time examined. Naturally, both the running 
and investment costs depend on the “size” of the activity, i.e., the volume of the 
outputs of the activity. In the present paper, the workflow process with minimal cost 
is to be synthesized. Therefore, the optimization is not for minimizing the processing 
time, instead the focus is on how to set up the cost optimal system. It is supposed 
throughout this paper that there is an unlimited intermediate storage opportunity at 
any activity. 

3 Structural Representation: P-Graph 

For formally analyzing the structures in workflow synthesis, an unambiguous 
structural representation is required. Process graph or P-graph, which is directed 
bipartite graph, has been introduced for this purpose [see Friedlet et al. (1992)]. A 
brief description of P-graph is given below. 

Let M be a given finite nonempty set of objects, usually materials, that can be 
transformed in the process under consideration. Transformation between two subsets 
of M occurs in an activity. It is necessary to link this activity to other activity through 
the elements of these two subsets of M. 

Let A be the set of activities to be considered in the synthesis; then A ⊆ ℘(M) × 
℘(M) where A ∩ M = ∅. If (α, β) is an activity, i.e. (α, β) ∈ A, then α is called the 
input set, and β, the output set of this activity. Pair (M, A) is termed a process graph 
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or P-graph with the set of vertices M ∪ A and the set of arcs {(x, y): y = (α, β) ∈ A 
and x ∈ α} ∪ {(y, x): y = (α, β) ∈ A and x ∈ β}. P-graph (M, A) is defined to be a 
subgraph of (M', A'), i.e. (M, A) ⊆ (M', A'), if M ⊆ M' and A ⊆ A'. The union of two 
P-graphs (M1, A1) and (M2, A2), (M1, A1) ∪ (M2, A2), is defined to be P-graph ((M1 ∪ 
M2, A1, ∪ A2). The indegree of vertex X, d-(X), is the number of arcs with endpoint 
X. If X is a material, then broadly speaking, d-(X) is the number of operating units 
producing material X. 

Example 1. Let us suppose that set M1 of materials and set A1 of activities of P-
graph (M1, A1) be given as 

M1 = {A, B, C, D, E, F, G, H, J, K } 
and 

A1 = {({C}, {A, F}), ({D}, {B}), ({E, F}, {C}), ({F, G}, {C}), ({G, H}, {D}),  ({H}, 
{B}), ({J}, {F}), ({K }, {G}), ({L}, {H})} [see also Table 1].  
 
 

Activity # Input Output 
1 C A, F 
2 D B 
3 E, F C 
4 F, G C 
5 G, H D 
6 H B 
7 J F 
8 K G 
9 K G 

10 L H 

Table 1: Plausible activities of Example 1 

P-graph (M1, A1) is depicted in Figure 1. Note that the input and output sets of 
activity1, ({C}, {A, F}), are {C} and {A, F}, respectively, and that the indegree of 
vertex A, d-(A), is 1 since one activity produces material A. 
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Figure 1: P-graph (M1, A1) where A, B, C, D, E, F, G, H, J, K, and L are materials, 
and 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are the activities 

P-graph (M, A) contains the interconnections among the activities of A. Each 
feasible activity network corresponds to a subgraph of (M, A). A product document 
can be generated by an appropriate network of the activities provided that the problem 
has at least one feasible solution. It is important to note that a product can usually be 
generated by different number and types of activities. For determining the optimal 
network of the workflow, all possible networks of each product must be taken into 
account.  

The number of feasible networks is usually large, therefore, a systematic 
procedure is required for determining the optimal network. For that, the combinatorial 
properties of feasible networks is examined first.  

Feasible process networks have some common combinatorial properties 
determining the term “combinatorially feasible network” as given in Definition 1 
[Friedler et al., 92a]. Since each feasible workflow network must have these 
combinatorial properties, the set of subgraphs of (M, A) can be reduced to the set of 
combinatorially feasible process networks or to the set of solution-networks in short. 

 
Definition 1. Subnetwork (M', A') of (M, A) is called a solution-network of workflow 
synthesis problem (P, R, A) if 
(S1) P ⊆ M', i.e., every product is represented in graph (M', A'), 
(S2) ∀x ∈ M', d-(x) = 0 iff x ∈ R, i.e., a vertex from M' has no input if and only if 
it represents a resource, 
(S3) ∀u ∈ A', ∃ path [u, v] in (M', A'), where v ∈ P, i.e., every vertex from A' has 
at least one path leading to a vertex representing a product, and 
(S4) ∀x ∈ M', ∃ (α, β) ∈A' such that x ∈ (α ∪ β), i.e., any vertex from M' must 
be an input to or output from at least one vertex from A'. 

The set of solution-networks is denoted by S(P, R, A); its important properties are 
expressed by the following theorem and lemma. 
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Theorem [Friedler et al., 92a]. S(P, R, A) is closed under union. 
Lemma [Friedler et al., 92a]. If (M', A') ∈ S(P, R, A), then M' is the union of all 

inputs and outputs of activities in A’. 
If (M', O') ∈ S(P, R, A); then, as a consequence of the theorem and the lemma, 

(M’, O') is uniquely determined provided that set O' is given. On the basis of these 
terms, a specific structure including all activities and their connections can be defined. 

Definition 2. Let us assume that S(P, R, A, O, f) ≠ ∅; then, the union of all 
solution-networks of PNS problem (P, R, A), denoted by µ(P, R, A), is defined to be 
its maximal network. 

Example 1 (revisited). If sets P and R are defined as P={A, B} and R={E, J, K, 
L}, then Figure 1 shows the maximal network of synthesis problem (P, R, O1). One of 
the 50 solution-networks of this problem is given in Figure 2. 
 

 

Figure 2: One of the solution-networks of workflow synthesis problem of Example 1 

Since the set of solution-networks is finite and closed under union, the maximal 
network is also a solution-network, i.e., µ(P, R, A) ∈ S(P, R, A). 

Obviously, any activity not included in the maximal network should not be 
considered for the optimal solution. Since the structure of any optimal solution is a 
solution-network, the mathematical programming model of workflow system 
synthesis is to be based on the maximal network. 

4 Mathematical Programming Model for Workflow Synthesis 

Let us consider a workflow system synthesis problem in which the set of products is 
denoted by P; the set of resources, by R; and the set of available activities, by A = {a1, 
a2, . . ., an}. Moreover, let M = {m1, m2, . . ., ml} be the set of the materials belonging 
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to these activities, and assume that P ∩ R = ∅, P ⊆ M, R ⊆ M, and M ∩ A = ∅. 
Then, P-graph (M, A), termed the network of the problem, contains the 
interconnections among the activities. Furthermore, each feasible network, producing 
the given set P of products from the given set R of resources using activities from A, 
corresponds to a subgraph of (M, A), i.e., the network of the workflow network under 
consideration. For any 1 ≤ j ≤ n, let yj = 1 if aj is contained in this subgraph and yj = 0 
otherwise. Thus, this subgraph is determined by vector (y1, y2, . . ., yn).  

Let E = {e1, e2, . . ., er} be the set of the arcs and assign to arc ek the continuous 
variable xk (k = 1, 2, . . ., r) representing the quantity of either the material consumed 
or the product produced. The function for which ϕ({ei1, ei2, . . ., eit}) = (xi1, xi2, . . ., 
xit) holds for any subset {ei1, ei2, . . ., eir} of E is denoted by ϕ. Finally, variable zj is 
assigned to activity aj (j = 1, 2, . . ., n) for identification. 

Activity represented by node aj is linked to the system through interconnections 
represented by its arcs contained in ω(aj). Especially, ω-(aj) includes the incoming 
arcs to vertex aj, and ω+(aj) includes the outgoing arcs from vertex aj. It follows that 
besides depending on yj and zj the constraint and cost of aj depend only on the 
variables belonging to these arcs, i.e., on ϕ(ω-aj)) ∪ ϕ(ω+(aj)). Consequently, the 
constraints on the cost of activity represented by node aj can be expressed, 
respectively, by 

 
gj(yj, ϕ(ω-(aj)), ϕ(ω+(aj)), zj), ≤ 0,      j = 1,2, . . ., n 
fj(yj, ϕ(ω-(aj)), ϕ(ω+(aj)), zj), ≤ 0,      j = 1,2, . . ., n 

 
where for a fixed value of yj, gj are nonlinear, differentiable functions on the 
practically interesting domain for j = 1, 2, . . ., n. The cost of an activity is usually the 
sum of the running cost and investment cost of this activity divided by the payback 
time. 

Similarly, the constraint on and cost function of vertex mi can be given, 
respectively, as follows: 

gj'(ϕ(ω-(mi)), ϕ(ω+(mi))), ≤ 0,      j = 1,2, . . ., l 
and 
fj'(ϕ(ω-(mi)), ϕ(ω+(mi))), ≤ 0,      j = 1,2, . . ., l 
 
In practice, g' and f' are usually linear; the former represents the balances and 

specifications of the products, i.e., quantity and quality, and the latter, the cost of 
resources. This mathematical model usually contains binary or integer variables 
mainly related to the investment costs of the activities resulting in a mixed integer 
optimization problem. 

5 Solution Procedure 

The mathematical programming model of workflow network synthesis given in 
Chapter 4, can be generated systematically by the maximal network generation 
algorithm, algorithm MSG [Friedler et al., 1993]. Since this algorithm is polynomial 
in the number of activities, it can determine the mathematical model of large 
workflow problems. Then, there are two options for solving this model. It can be 
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solved by commercially available mixed integer programming solvers or specific 
solvers developed for the P-graph framework. The application of the specific solvers 
will be shown briefly. 

Algorithm SSG [Friedler, 92b] is for generating all combinatorially feasible 
workflow networks. These networks can be simulated, evaluated and compared by 
available tools. Since the binary or integer variables of the mathematical 
programming model is usually related to the structure of the system, the mathematical 
model of the individual combinatorially feasible networks does not include any 
integer variable. Consequently, the evaluation can be performed by LP or NLP 
method.  

If the number of plausible activities is large, the available general purpose mixed 
integer solvers become ineffective. Also, the exhaustive enumeration by algorithm 
SSG may require high level of computational effort. For solving complex problems, 
however, the combinatorial properties of feasible networks can be further exploited. 
The resultant procedure, the accelerated branch and bound method [Friedler et al., 96] 
developed for network synthesis reduces the search space to the combinatorially 
feasible networks, resulting in a high acceleration relative to basic branch-and-bound 
solvers [Peters, 03]. 

6 Concluding Remarks 

The synthesis of cost optimal workflow structures has been introduced and formally 
defined. The mixed integer programming model of this problem has been identified. 
The solution of this model is proposed on the basis of P-graph based network 
algorithms. 
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